Real News On-line!

沖縄から福島、東京までの日本の政治、ビジネス、犯罪、技術、社会、文化に関する最新ニュースと詳細な分析

予想外の二重クエーサーが発見されました – 衝突コースでブラックホールに火をつける一対の合体銀河

予想外の二重クエーサーが発見されました – 衝突コースでブラックホールに火をつける一対の合体銀河

このアーティストのコンセプトは、2 つの銀河の中心部にある 2 つのクエーサーが混沌とした合体の過程で明るい輝きを放っていることを示しています。 2 つの銀河間の綱引きが、星誕生の嵐を巻き起こしました。 クエーサーは、遠く離れた銀河の中心からの強烈な光の輝かしいビーコンです。 それらは、落下する物質を貪欲に食べる超大質量ブラックホールによって動力を与えられています。 この育む熱狂は、ホスト銀河の数十億の星の集合的な光を凌駕する可能性のある放射線の洪水を解き放ちます. 数千万年後、ブラック ホールとその銀河、およびクエーサー ペアが合体し、さらに巨大なブラック ホールが形成されます。 クレジット: NASA、ESA、ジョセフ オルムステッド (STScI)

合体した銀河のペアが衝突コース上のブラック ホールに点火する

クエーサーは、宇宙で最も明るいものの 1 つです。 空一面に散りばめられ、1000億以上の星々の豊かさで輝いています。 そして、7 月 4 日の明るい大気フレアのように、それらは比較的短い時間、宇宙の時間スケールで輝きます。 それは、高温になる大量のガスと塵をむさぼり食う超大質量ブラック ホールによって動力が供給されているためです。 しかし、クエーサー フード ビュッフェの期間は限られています。

クエーサーのこのつかの間の性質は、天文学者が互いに衝突コースにある 2 つのクエーサーを見つけるのに役立ちました。 それは、100 億年前に互いに衝突した一対の銀河の中に埋め込まれています。 遠い宇宙でこれほどダイナミックなデュオを見つけることはめったにありません。 この発見は、銀河が頻繁に衝突し、接近した衝突からの破片やジェットがブラックホールに群がっていた遠い昔、宇宙がいかに不安定であったかについての手がかりをもたらします。

燃料ろうそくの流入が弱まるにつれて、2つのクエーサーは異なる速度でちらつくため、宇宙で発生する異常な活動として識別されています。 ハッブルは画像を拡大し、ホスト銀河と同様に明確に解像しました。

デュアルクエーサー (J0749 + 2255)

ハッブル宇宙望遠鏡が撮影した、宇宙が誕生してわずか 30 億年だった頃に存在した一対のクエーサーの画像。 衝突する一対の銀河の中に埋め込まれています。 クエーサーは、銀河 1 つ分未満のサイズで区切られています。 クエーサーは、猛烈な超大質量ブラック ホールによって動力を供給されており、ガス、塵、その他の重力の範囲内にあるものを窒息させると、猛烈なエネルギーの泉が噴出します。 ブラックホールはいずれ合体する。 クレジット: NASA、ESA、Yu-Ching Chen (UIUC)、Hsiang-Chih Huang (IAS)、Nadja Zakamska (JHU)、Yu Chen (UIUC)

ハッブル宇宙望遠鏡が遠く離れた宇宙に二重クエーサーを予期せず発見

初期の宇宙は、銀河が互いに衝突し、さらには合体する不安定な場所でした。 使用[{” attribute=””>NASA’s Hubble Space Telescope and other space and ground-based observatories, astronomers investigating these developments have made an unexpected and rare discovery: a pair of gravitationally bound quasars, both blazing away inside two merging galaxies. They existed when the universe was just 3 billion years old.

Quasars are bright objects powered by voracious, supermassive black holes blasting out ferocious fountains of energy as they engorge themselves on gas, dust, and anything else within their gravitational grasp.

“We don’t see a lot of double quasars at this early time in the universe. And that’s why this discovery is so exciting,” said graduate student Yu-Ching Chen of the University of Illinois at Urbana-Champaign, lead author of this study.

Finding close binary quasars is a relatively new area of research that has just developed in the past 10 to 15 years. Today’s powerful new observatories have allowed astronomers to identify instances where two quasars are active at the same time and are close enough that they will eventually merge. 

There is increasing evidence that large galaxies are built up through mergers. Smaller systems come together to form bigger systems and ever larger structures. During that process there should be pairs of supermassive black holes formed within the merging galaxies. “Knowing about the progenitor population of black holes will eventually tell us about the emergence of supermassive black holes in the early universe, and how frequent those mergers could be,” said Chen.

Dual Quasar (J0749+2255) Compass

This compass image shows a Hubble Space Telescope photograph of a pair of quasars that existed when the universe was just 3 billion years old. They are embedded inside a pair of colliding galaxies. The quasars are separated by less than the size of a single galaxy. Quasars are powered by voracious, supermassive black holes blasting out ferocious fountains of energy as they engorge themselves on gas, dust, and anything else within their gravitational grasp. The black holes will eventually merge. Credit: NASA, ESA, Yu-Ching Chen (UIUC), Hsiang-Chih Hwang (IAS), Nadia Zakamska (JHU), Yue Shen (UIUC)

We’re starting to unveil this tip of the iceberg of the early binary quasar population,” said Xin Liu of the University of Illinois at Urbana-Champaign. “This is the uniqueness of this study. It is actually telling us that this population exists, and now we have a method to identify double quasars that are separated by less than the size of a single galaxy.”

This was a needle-in-haystack search that required the combined power of NASA’s Hubble Space Telescope and the W.M. Keck Observatories in Hawaii. Multi-wavelength observations from the International Gemini Observatory in Hawaii, NSF’s Karl G. Jansky Very Large Array in New Mexico, and NASA’s Chandra X-ray Observatory also contributed to understanding the dynamic duo. And, ESA (European Space Agency)’s Gaia space observatory helped identify this double quasar in the first place. 

“Hubble’s sensitivity and resolution provided pictures that allow us to rule out other possibilities for what we are seeing,” said Chen. Hubble shows, unequivocally, that this is indeed a genuine pair of supermassive black holes, rather than two images of the same quasar created by a foreground gravitational lens. And, Hubble shows a tidal feature from the merging of two galaxies, where gravity distorts the shape of the galaxies forming two tails of stars.

However, Hubble’s sharp resolution alone isn’t good enough to go looking for these dual light beacons. The researchers enlisted Gaia, which launched in 2013, to pinpoint potential double-quasar candidates. Gaia measures the positions, distances, and motions of nearby celestial objects very precisely. But in a novel technique, it can be used to explore the distant universe. Gaia’s huge database can be used to search for quasars that mimic the apparent motion of nearby stars. The quasars appear as single objects in the Gaia data because they are so close together. However, Gaia can pick up a subtle, unexpected “jiggle” that mimics an apparent change in position of some of the quasars it observes. 

In reality, the quasars aren’t moving through space in any measurable way. Instead, their jiggle could be evidence of random fluctuations of light as each member of the quasar pair varies in brightness on timescales of days to months, depending on their black hole’s feeding schedule. This alternating brightness between the quasar pair is similar to seeing a railroad crossing signal from a distance. As the lights on both sides of the stationary signal alternately flash, the sign gives the illusion of “jiggling.”

Another challenge is that because gravity warps space like a funhouse mirror, a foreground galaxy could split the image of a distant quasar into two, creating the illusion it was really a binary pair. The Keck telescope was used to make sure there was no lensing galaxy in between us and the suspected double quasar.

Because Hubble peers into the distant past, this double quasar no longer exists. Over the intervening 10 billion years, their host galaxies have likely settled into a giant elliptical galaxy, like the ones seen in the local universe today. And, the quasars have merged to become a gargantuan, supermassive black hole at its center. The nearby giant elliptical galaxy, M87, has a monstrous black hole weighing 6.5 billion times the mass of our Sun. Perhaps this black hole was grown from one or more galaxy mergers over the past billions of years.

The upcoming NASA Nancy Grace Roman Space Telescope, having the same visual acuity as Hubble, is ideal for binary quasar hunting. Hubble has been used to painstakingly take data for individual targets. But Roman’s very wide-angle infrared view of the universe is 200 times larger than Hubble’s. “A lot of quasars out there could be binary systems. The Roman telescope can do huge improvements in this research area,” said Liu.

The results will be published in the April 5 journal Nature.

Reference: “A close quasar pair in a disk–disk galaxy merger at z = 2.17” by Yu-Ching Chen, Xin Liu, Adi Foord, Yue Shen, Masamune Oguri, Nianyi Chen, Tiziana Di Matteo, Miguel Holgado, Hsiang-Chih Hwang and Nadia Zakamska, 5 April 2023, Nature.
DOI: 10.1038/s41586-023-05766-6

The Hubble Space Telescope is a project of international cooperation between NASA and ESA. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble and Webb science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.

READ  0.0000000000000000005 秒 - 物理学者は、これまで人類が生成した中で最も短い信号の 1 つを生成しました